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Abstract. A two-valued function f : V — {—1,+1} defined on the vertices of a graph
G = (V,E), is a non-negative majority total dominating function if the sum of its function
values over at least half the open neighbourhood is at least zero. That is, for at least half of
the vertices v € V, f(N(v)) > 0, where N(v) consists of every vertex adjacent to v. The
non-negative majority total domination number of a graph G, denoted V¢ ;(G), is the minimum
value of Y f(v) over all non-negative majority total dominating functions f of G. In this

veV(Q)

paper, we initialize the study of non-negative majority total domination in graphs.

1 Introduction

By a graph G = (V, E), we mean a finite, non-trivial, connected, and undirected graph with
neither loops nor multiple edges. The order and size of G are denoted by n and m respectively.
For graph theoretic terminology we refer to Chartand and Lesniak [1].

The study of domination is one of the fastest growing areas within graph theory. A subset
D of vertices is said to be a dominating set of G if every vertex in V either belongs to D or
is adjacent to a vertex in D. The domination number v(G) is the minimum cardinality of a
dominating set of G. Survey of several advanced topics on domination are given in the book
edited by Haynes et al [2].

For a real valued function f : V' — R on V, weight of f is defined to be w(f) = > f(v)
veV
and also for a subset S C V, we define f(S) = Y f(v). Therefore w(f) = f(V). Majority
vES
]

domination was first introduced by Broere et al. in [3] and further studied in [4, 5].

A function f : V. — {—1,41} is called a signed majority total dominating function if
f(N(v)) > 1 for at least half of the vertices in graph G. The signed majority total domina-
tion number of G, is denoted by 7, ,;(G) and is defined as
Vhai(G)=min {w(f) | f is a signed majority total dominating function of G}. Further, the
concept of non-negative signed domination of a graph was introduced in [6]. In this paper, we
initiate the study of non-negative majority total domination in graphs.

2 Common Classes of Graphs

Definition 2.1. A function f : V' — {—1, 41} is called a non-negative majority total dominating
function (briefly NMTDF) if f(N(v)) > 0 for at least half of the vertices in G. The non-
negative majority total domination number of G, denoted by v\!.(G), is defined as v} . (G)=
min{w(f)| fisa NMTDF of G}.

Let us follow throughout the paper the following terminologies.
If f is a non-negative majority total dominating function of a graph G, then we define the sets
Py, My and Ny as follows.
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(i) Pr(G) ={veV(G): f(v) = 1}
(ii)y My(G) ={veV(G): f(v)=
(iii) Ny(G) ={veV(G): f(N(v )) >0}
Theorem 2.2. For any path P, onn > 2 vertices,
Vomaj(Pn) =2[%] —n

Proof. Let P, = (v1,vs,...,v,) and let f be a non-negative majority total dominating function
of P,,. Then for any vertex v € N, at least one neighbour of v belongs to Py. Since |Ny| > (%}
we have |Py| > [%] which implies that [My| < n — [%]. Hence |Py| — M| > 2 [%] — n.

On the other hand, define the function g : V — {—1,+1} by

+1 if2<i<[%]+ %] andi=2(mod 3)
g(vi) = :
—1 otherwise

Then we can verify that g(N (v)) > O for at least half of the vertices in G with weight 2 [ %] —n.
Hence y)\! (P,) < w(f) =2 [%] — n. Consequently, the result follows. O

Corollary 2.3. For any negative integer k, there exists a graph G for which v\t j (G) = k.
Theorem 2.4. For n > 3, an integer v\ ;(Cp) = vt (Pn).

Proof. Let C,, = (v, v2, ..., v,) be the cycle on n vertices. Then C,, —v,v,, is a path on n vertices
and also the function g defined on P, = C,, — viv,, as in Theorem 2 2, would be a non-negative
majonty total domination for the cycles C,, so that v,v%:(Cy,) < N (P,). We now show that
Ymei(Cn) = ANLi(P,). Let f be a minimum non-negative majority total domination of C,.
For n > 3, by Theorem 2.2, V% (P,) < 0. Therefore, |Ps| — [My| = f(V) = ]t (C) <
Ymei(Pn) < 0 which in turn implies that [My| > |Py|. This means that My must contain two
adjacent vertices v;,v;. Consider now the path P on n vertices obtained from C,, by removing
the edge v;v;. The number of non-negative open neighborhood sums under f on P is the same
as that of f on C,,. It follows that f is a non-negative majority total dominating function of P
and hence v50; (Pn) = viva; (P) < f(V) = 96;(Cn). O

Theorem 2.5. For any complete graph K,,(n > 2), we have
—1 ifnisodd

Nt (K,) =
Vima; (n) { 0 otherwise
Proof. Let f be a non-negative majority total dominating function of K,,. Then |Ps|+ |M;| =n
and |P¢| — |My| = f(V). Now, consider a vertex v of K,, with f(N(v)) > 0. Certainly, f(V) =
f(N(v)) 4+ f(v) > 0— 1 which means that |Pf| — [My| > —1. It follows that |P¢| > [271] and

—1 ifnisodd
n+1 —1 1
|My| < L ; J Thus VmaJ(K ) = PLTW - LM J That is, %WJ(K )2 0 otherwise

Now, consider the function g : V' — {—1,+1} that assigns the value -1 for [%] vertices of

K, and the value +1 for the remaining vertices. Obviously, ¢ is a non-negative majority total

n

dominating function of K, so that v\ . (K,) <n—2[%].

- —1 ifnisodd
That is, v (Kn) < { 0 otherwise

Theorem 2.6. For any complete bipartite graph K, s(s > r > 1)

—s if r is even
1—s ifrisodd

’Yﬁfzg‘ (Kr,s) = {
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Proof. Let (U, W) be the bipartition of K, ; with |[U| = r and [W| = s. Let f be a minimum
non-negative majority total dominating function of K, ;. Then W contains a vertex = with
f(N(z)) > 0 when r < s. Certainly, when r = s, either U or W contains such a vertex z.
Without loss of generality assume that W contains such a vertex z. This implies that f(U) > 0.
If UT and U~ denote the set of vertices that are assigned with +1 and -1 respectively, then
F(U)=|UT|—|U"|sothat |[UT|—|U~| > 0. Obviously, [U*"|+ |[U~| = r. Using these, we get
|UT| > [5] and |[U~| < | %] and consequently f(U) > [5] — |5].

We now claim that every vertex of W receives the value -1 under f. If not, there exists a
vertex w € W with f(w) = +1. Now the function g : V(K. s) — {—1,+1} obtained from f by
replacing f(w) by -1, is a non-negative majority total dominating function with w(g) = w(f)—-2,
which is a contradiction to the minimality of f. Hence every vertex of W receives -1 under f so
that f(W) = —s. Thus f(V) = f(U)+ f(W) > [5] — | 5| — 5. That s,

— if r is even
NthTS > s 1
Vimaj )_{ 1—s ifrisodd

Now, the function that assigns the value +1 to [g] vertices of U and the value -1 for the

remaining vertices of K, ; is a non-negative majority total dominating function of K, ; with
weight [5] — | 5] — s. This proves the result. O

3 Bounds
In this section, we discuss some bounds for the non-negative majority total domination.

Theorem 3.1. A NMTDF fon a graph G is minimal only if for every vertex v € V with f(v) =1,
there exists a vertex u € N(v) with f(N(u)) € {0, 1}.

Proof. Let f be a minimal NMTDF and assume that there is a vertex v with f(v) = 1 and
F(N(u)) ¢ {0,1} for every vertex u € N(v). Now, define a new function g : V. — {—1,+1}
by g(v) = —1 and g(w) = f(w) for all w # v. Then for all u € N(v), either f(N(u)) < —1,
in which case g(N(u)) = f(N(u)) =2 < =3 or f(N(u)) > 2, in which case g(N(u)) =
f(N(u)) =2 > 0. Forw ¢ N(v), we have g(N(w)) = f(N(w)). Thus [Ny| = |Nf| and so g is
an NMTDF on G. Since w(g) < w(f), the minimality of f is contradicted. O

Theorem 3.2. Let G be a graph with the degree sequence (dy,dy, ..., dy,) such that di < dy <
o < dp. Then Nt (G) > —n + % ZL%J VTJJ .

maj

Proof. Let g be a non-negative majority total dominating function of G. Then g(N(v)) > 0 for
at least half of the vertices say v;1,vj2, ..., Uis] with corresponding degrees d;i,d;2, ..., dj(”ﬂ
respectively in G. Let f(x) = M for all vertices in G. Then f is a 0-1 valued function.First,

> Z(%W d

i
i=1 2

w3

> Z[ﬂ dj

j=1 12
On the other hand,

3
JR—)

S f(V(w50)) < S £ (N ()
=1y deg v f(vy)

< dy f(V)

Therefore, £(V) > L 121 & Also since 1!, (G) = g(V) = 2£(V) — n, we

maj
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have 'y,],\{j;j(G) > -—n+ d% ZJEJ VT’J i

Theorem 3.3. If G is a graph of order n, then

nd—2nA

s if n is even

’77]:{2]' (G) 2
7n6+i$g2") if nis odd

Proof. Let f be a fynf\{éj(G)—function on G. Let Py = Py U P; U P where P, and P;s are sets of
all vertices of Py with degree equal to A and ¢, respectively, and Pz contains all other vertices
in Pr. Let My = Ma U Ms U Mg where Ma, Ms and Mg are defined similarly. Further, for
i € {A, 4,0}, let V; be defined by V; = P, U M;. Thus, n = |Vi| + |Vs| + |Va|.

Since for at least half of the vertices v € V, f(N(v)) > 0, we have
£ FN() > 0[4] - Aln — [5]) = A(T3] - ).
ve

The sum Y f(N(v)) counts the value f(v) exactly deg v times for each vertex v € V. That is
veV

> f(N(v)) = Ugvf(v) deg v.

veV

Thus U%:Vf(v) degv > A(]%] —n).

By spliting the sum up into the six summations and replacing f(v) with the corresponding value
of +1 or -1 yields

Sodegv+ Y degv+ Y degv— Y degv— Y. degv— Y degv>A([%] —n).
vE P, v€EPs vEPg vE My veEMs vEMg

We know that deg v = A for all v € {Px, Ma} and deg v = 6 for all v € {P5, M;}. Also, for any
vertex v € {Pg, Mg}, d+ 1 <degv <A—1.

Therefore, we have

A|P| +6|P5| + (A= 1) [Po| — A|My| = 8 |M;| — (54 1) [Mo| = A([2] = n).
For i € {A, 6,6}, we replace | P;| with |V;| — | M;] in the above inequality, we have

AlVal + 8 [Vs| + (A= 1) [Vo| = A([3] —n) + 2A[Ma| + 26 |Ms] + (A + 6) [ M.
It follows that
(2n — [5])A > 2A[My] + 26 [Ms| + (A +6) | M| + (A = 6) [Vs| + V5|
=2A|Ma| + 26| M;| + (A +6) [Mo| + (A = 0)(IPs| + [ Ms]) + (|Po| + [Me])
=2A|Ma| + (A+06) [Ms| + (A+ 6+ 1) |Mg| + (A—9) |Ps| + | Ps]
> (A+0) [Ma| + (A+6) [Ms| + (A +6) [Mg| = (A+ ) [ M.

Therefore, | M| < @n-[3])a

A+
Hence. 1Y%, (G) = |Py| — [My| = n —2[My| = n — 225 [ED8

maj

Theorem 3.4. Let G be a graph of order n and let k be any integer. Then vﬁéj(G) = kifand
only if there exists a partition (Py, My) of V' for which

(i) |N(xz) N Pg| —|N(xz) N Mys| > 0 for at least half of the vertices of G.

(ii) |Py| = |My| = k.
(iii) For any P C P¢ and any M C My satisfying ‘Pl’ > ’M/ , we have

H;z: ev| 2(’N(x) np|- ’N(z) AM'|) > [N(z) NPy - |N() nMﬂ}‘ >n—[2].
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Proof. Suppose ’Ymag (G) = k. Let f be a NMTDF of G such that f(V) = ! (G) = k.
Then (Py, My) constitutes a partition of V. For each z € Ny, |[N(z) N Py| — |[N(xz) N My| > 0.
Since |[Ny¢| > [%], condition (i) holds. Since f(V) = |Ps| — |M; ], condition (ii) holds. To
verify condition (iii), consider any P C Pyand M ' C My such that ‘Pl‘ > ‘M /‘. Let X =
(P; —PYUM and Y = (M; — M) U P". Now, define a function g : V' — {—1,+1} by
g(x) =1 forevery z € X and g(z) = —1 forevery x € Y. Then

g(V) = [X| = |V
= (1P| - — (IMy] = M| +
= |Py| = M| —2(|P'| -
< | Pyl — | My

= (V) = 1me; (G)-
Thus g is not a NMTDF of G and hence |N,| < [%]. Consequently,
{z € V|g(N(z)) <0} = |V — Ng| =n—|Ny| >n—[%]. Also,
g(N(z)) = [N(z) N X| = [N(z) Y|
= |N(z) N Py| — |N(z) N M| — 2(]N(z) mp” ~|N@) nar)).

Hence we obtain condition(iii).

For the sufficiency, suppose there is a partition (Py, M) of V such that conditions (i), (ii) and
(iii) hold. Define a function f : V' — {—1,+1} by f(z) = 1 forevery z € Py and f(z) = —1
for every x € M. Then by condition(i), f(N(z)) = |N(z) N Ps|—|N(z) N Mg| > 0 for at least
half vertices of G. Thus f is NMTDF of G so that by condition(ii) v\’ . (G) < [Py| — [My| = k.

We now show that v,v%(G) > |Py| — |My|. Suppose to the contrary, y%:(G) < [Ps| — [Mg].
Let g be a NMTDF of G such that 7! (G) = g(V) Let X = {z ¢ V|g( )=1}and Y =
{$€V|g( ):—1} LCtP = Pf—XandM = Mf—Y ThenP - Pf,M - Mf,
X=(P;—P)YuM andY = (M; — M') U P'. Moreover,

[Pyl = 1Myl + 2 M| = | Py = 1Py = P + \M’\ — 1My +
= |X‘ |Y| _Wma] (G)
< |Py| — | My], so that ’P" >

4

Therefore by condition (iii),

[V = Nyl = {z € V]g(N(z)) < 0}

= Hx e V|2(‘N(x) - ‘N(m) AM'|) > [N(z) N Pf| — [N(z) N Mf|}‘ >n— [2]. Thus,
|Ny| < [%]. contradicting the fact that g is NMTDF of G. Hence, v\ .(G) > |Pf| — |M;|. O

4 Trees

In this section, we determine upper bound of non-negative majority total domination of a tree.
By assigning +1 to the center of a star and —1 to all the leaves we obtain a NMTDF of the star.
Thus

Proposition 4.1. For n > 3, )Nt (K1 1) =2 —n.

Hence the Non-negative majority total domination number of a tree can be arbitrarily large
negative.

Theorem 4.2. For any tree T of order n > 2, vﬁgj(T) <2 {%] —n.

Proof. We proceed by induction on the order n > 2 of atree T. If n € {2,3}, then T = P,
and the result follows from Theorem 2.2. This proves the base cases when n = 2 or n = 3. For

n > 4, assume that every nontrivial tree T of order n' < n, fy,J,\Zflj(T/) <2 [%—‘ —n'. Let T be
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a tree of order n. If 7' is a star, then by Proposition 4.1, 4! (T) =2 —n < 2 [%] — n. Hence
the desired result follows if T is a star. Thus we assume that diam(T) > 3.

Let T be rooted at a leaf r of a longest path. Let v be a vertex at distance diam(T") — 1 from r
on a longest path starting at r and let w be the parent of v. Let |N(v) — {w}| = m. Thenm > 1.
Let T = T — (N(v) — {w}). Then T" has order n" = n — m. Since diam(T) > 3, we have
n > 2. Let f bea Yovei (T") - function. Let f : V — {—1,+1} be the function defined by
f(u) = —1 for every child of v and every vertex whose open neighborhood sum is at least zero

in T also has open neighborhood sum at least zero in 7', while each child of v has f(N (u)) > 0.

’

Hence [%—‘ +m > [%1 vertices of T" has open neighborhood sum at least zero and so f is

a NMTDF of T. Thus N (T) < f(V(T)) = f(V(T") — m. By the inductive hypothesis,

maj

ANE(T) <2 PT/—‘ —n' =2[27™] —n+mandso N (T) <2[252] — n+m — m. Since

maj

m>1,ynt(T) <2 [271] —n <2[2] — n. Hence the desired result follows. O

As an immediate consequence of Theorem 3.4, we have the following result.

Corollary 4.3. Let T be a tree of order n. Then 'ynj\lfgj (T)=2 [%] — n if and only if there exists
a partition (Py, My) of V for which

(i) |N(x) N Ps| —|N(xz) N M| > 0 for at least half of the vertices of T.

(i) |Py| = My =2[5] .
(iii) For any P C Py and any M C My satisfying ’P" > ’M/
Hx ev| 2(’N(:c) N P" - ‘N(x) OM/‘) > |N(z) N Py| — [N(z) mMﬂH >n—[2].

, we have
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