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FEEDBACK RESOLVING SETS IN GRAPHS

M. RAJESWARI1, A. ANITHA, AND I. SAHUL HAMID

ABSTRACT. For an ordered subset W = {w1, w2, ..., wk} of vertices in a con-
nected graph G and a vertex v of G, the metric representation of v with respect
to W is the k-vector r(v/W ) = (d(v, w1), d(v, w2), ..., d(v, wk)). The set W is
a resolving set for G if r(u/W ) 6= r(v/W ) for every pair of distinct vertices u
and v of G. A resolving set D such that 〈V −D〉 is acyclic is called a feedback
resolving set. The minimum and maximum cardinality of a minimal feedback
resolving set are denoted by β∗ and β+

∗ respectively. This paper initiates a study
on these parameters.

1. INTRODUCTION

By a graph G = (V,E), we mean a connected, finite, undirected graph with
neither loops nor multiple edges. The order and size of G are denoted by n

and m respectively. For graph theoretic terminology we refer to Chartand and
Lesniak [3].

The distance d(u, v) between two vertices u and v in a connected graph G is
the length of a shortest u−v path inG. For an ordered subsetW = {w1, w2, ..., wk}
of vertices in a connected graph G and a vertex v of G, the metric representation
of v with respect to W is the k-vector r(v/W ) = (d(v, w1),d(v, w2),..., d(v, wk)).
The set W is a resolving set for G if r(u/W ) 6= r(v/W ) for every pair of distinct
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vertices u and v of G. The metric dimension β(G) of G is the minimum cardi-
nality of a resolving set for G while the upper metric dimension β+(G) is the
maximum cardinality of a minimal resolving set in G. The concept of resolving
set and the respective parameter metric dimension of a graph was introduced
by Slater in the name of locating set and location number respectively. Later,
Harary and Melter [7] also independently discovered the same notion, but used
the term metric dimension, rather than location number, the terminology that
we have adopted. For more details about the notion of metric dimension, one
can refer to [1, 2, 4] and [6]. Recently, these concepts have been extended in
various ways. For example, connected resolving set [9], independent resolving
set [5] and acyclic resolving set [8] are some such concepts. In this sequence,
this paper introduces and studies the concept of feedback resolving set.

2. DEFINITIONS AND EXAMPLES

In this section, we define the notion of feedback resolving set of a graph
and the corresponding parameter, namely feedback metric dimension and upper
feedback metric dimension. Further, we determine the feedback metric dimen-
sion for some common classes of graphs such as paths, cycles, complete graphs,
complete bipartite graphs, the Petersen graph and wheels.

Definition 2.1. A resolving set S of a graph G such that 〈V − S〉 is acyclic is
said to be a feedback resolving set (FR-set). A feedback resolving set none of
whose proper subsets is a feedback resolving set is a minimal feedback resolving
set (MFR-set). The feedback metric dimension β∗(G) and the upper feedback
metric dimension β+

∗ (G) are respectively the minimum and maximum cardinality
of a MFR-set of G.

Remark 2.1. (i) In a non-trivial graph G, the set V (G)−{v} is always a FR-
set, for any vertex v in G. This implies that any non-trivial graph possesses
a FR-set and therefore the parameters β∗(G) and β+

∗ (G) are well-defined
for any non-trivial graph.

(ii) Certainly, a subset D ⊆ V (G) containing a FR-set is also a FR-set so that
the property being feedback resolvability is super heriditery. Therefore, a
FR-set S of G is minimal if and only if S − {v} is not a FR-set of G, for
any vertex v ∈ S.
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Example 1. (i) Since a tree T is acyclic, it follows that β∗(T ) = β(T ) and
β+
∗ (T ) = β+(T ).

(ii) Consider the graphG given in Figure 1. Here the set S = {x1, y2, y3, x4, v2, v3}
is a FR-set of G so that β∗(G) ≤ 6. On the other hand, consider a FR-
set D of G. Since 〈V −D〉 is acyclic, the set D must contain at least
two of the vertices v1, v2, v3, v4 and v5. Further, for a vertex v ∈ V (G),
we have d(xi, v) = d(yi, v), for all i ∈ {1, 2, 3, 4}. Therefore, for each
i ∈ {1, 2, 3, 4}, either xi or yi (possibly both) must lie in D. Thus |D| ≥ 6

and so β∗(G) = 6. Further, the set D = {x1, x3, x4, y2, y3, y4, v2, v5} is a
MFR-set of maximum cardinality so that β+

∗ (G) = 8.
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FIGURE 1. A graph G with β∗(G) = 6 and β+
∗ (G) = 8

In the following, we determine the value of β∗ for some common classes of
graphs such as cycles, complete graphs, complete bipartite graphs, wheels and
the Petersen graph. In a graph G, a vertex v is said to resolve the vertices u and
w if d (v, u) 6= d (v, w).

Proposition 2.1. (i) The feedback metric dimension of a cycle is always two.
(ii) For the complete graph Kn, (n ≥ 2), β∗(Kn) = n− 1.

Proof. (i) It is clear that the set consisting of any two adjacent vertices of a
cycle Cn is a FR-set of the cycle so that β∗(Cn) ≤ 2. Further, a single
vertex will not resolve its two neighbours so that a FR-set must contain
at least two vertices. Thus β∗(Cn) = 2.

(ii) For any vertex v of Kn, the set V (Kn) − {v} is a FR-set of Kn so that
β∗(Kn) ≤ n − 1. Further, since any two vertices of Kn are adjacent, for
any resolving set S of Kn, we have |V − S| ≤ 1. That is, β∗(Kn) ≥ n− 1.

�
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Proposition 2.2. Let r and s be integers with r, s ≥ 1 and r + s ≥ 3. Then
β∗(Kr,s) = r + s− 2.

Proof. Let (X, Y ) be the bipartition of Kr,s with |X| = r and |Y | = s. Let x ∈ X
and y ∈ Y . Then S = V (Kr,s) − {x, y} is a FR-set of Kr,s so that β∗(Kr,s) ≤
r + s− 2. Now, let S be any FR-set of Kr,s. We need to prove that |V − S| ≤ 2.
If not, consider any three vertices u, v and w in V − S. Assume that u, v ∈ X.
Then d (z, u) = d (z, v) for all z ∈ S and so r(u/S) = r(v/S) which implies
that S is no longer a FR-set, a contradiction. Thus |S| ≥ r + s − 2. Hence
β∗(Kr,s) = r + s− 2. �

Proposition 2.3. The feedback metric dimension of the Petersen graph is three.

Proof. Let the vertices of the Petersen graph G be labeled as in Figure 2. Then
S = {v1, v4, u2} is a FR-set of G and so β∗(G) ≤ 3. Further, for any subset
D = {vi, vj} of V (G) with cardinality two, there exist at least two vertices say vr
and vs such that they are not adjacent to both vi and vj. Since diameter of the
Petersen graph is two, any two non-adjacent vertices are at a distance of two.
Hence neither vi nor vj resolve the pair of vertices vr and vs. Hence D is not a
FR-set so that β∗(G) = 3. �

sv4 sv3su4 su3
sv5 su5 su2 sv2

sv1su1

FIGURE 2. The Petersen graph

Proposition 2.4. If Wn denotes the wheel on n + 1 vertices, then

β∗(Wn) =

{
β(Wn) if n = 3, 6

β(Wn) + 1 elsewhere
.

Proof. Let v be the central of Wn. When n = 3 or n = 6 any minimum resolving
set of Wn is also a minimum FR-set of Wn and so we have β∗(Wn) = β(Wn).
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Assume n /∈ {3, 6}. It is clear that if S is a minimum resolving set of Wn, then
S ∪ {v} is a FR-set of Wn and so β∗(Wn) ≤ β(Wn) + 1. For the other inequality,
let us consider a minimum resolving set D of Wn. It is enough to prove that
D is not a FR-set of Wn; this will imply that β∗(Wn) > β(Wn). We first claim
that v /∈ D. On the contrary, suppose v ∈ D. If x and y are any two vertices
of Wn outside D, then d (x, v) = d (y, v) and so there exists z ∈ D such that
d (x, z) 6= d (y, z). Thus r(x/D−{v}) 6= r(y/D−{v}); this means that D−{v} is
also a resolving set of Wn, a contradiction to the minimality of D. Further it has
been proved in [1] that β(Wn) =

⌊
2n+2

5

⌋
for n /∈ {3, 6}. This implies that there

exist two adjacent vertices u and w, different from v, that are not contained in
D. Therefore the vertices u, v and w form a triangle in 〈V −D〉 and so D is not
FR-set of Wn. �

3. BOUNDS AND REALIZATION THEOREMS

Theorem 3.1. A FR-set S of a graph G is minimal if and only if for every vertex
u ∈ S one of the following holds.

(i) at least one of the components of 〈V − S〉 contains at least two neighbours
of u in G.

(ii) there exist v, w ∈ V − S such that d (v, x) = d (w, x), for all x ∈ S − {u}.

Proof. Let S be a FR-set of G. Assume for every u ∈ S, one of (i) and (ii) holds.
We have to show that S is minimal. Suppose not. Then for all
u ∈ S, S − {u} is also a FR-set. This gives that 〈V − {S − {u}}〉 is acyclic
and S −{u} is a resolving set of G. Since 〈V − {S − {u}}〉 is acyclic, u can have
at most one neighbour in any component of 〈V − {S − {u}}〉. This produces a
contradiction to (i). Since S − {u} is a resolving set of G, for any two vertices
v, w ∈ V − {S − {u}}, we have d (v, x) 6= d (w, x) for some x ∈ S − {u}. This
gives a contradiction to (ii). Hence S is minimal.

Conversely, suppose there is a vertex u ∈ S to which neither (i) nor (ii) holds.
We claim that S − {u} is a FR-set of G. Since (i) does not hold, u has at most
one neighbour in each component of 〈V − S〉 and so 〈V − (S ∪ {u})〉 is acyclic.
Further, as (ii) does not hold, for every pair of vertices v and w in V − S, there
exists a vertex x in S − {u} such that d(v, x) 6= d(w, x) so that S − {u} is a
resolving set of G. Thus S − {u} is a FR-set of G. �
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Theorem 3.2. If G is a connected graph on n vertices, then 1 ≤ β∗(G) ≤ n − 1.
Further β∗(G) = 1 if and only if G is a path and β∗(G) = n− 1 if and only if G is
complete.

Proof. As for any vertex v ∈ G, the set V − {u} is a FR-set of G, it follows
that β∗(G) ≤ n − 1. Certainly β∗(G) ≥ 1. Now, suppose β∗(G) = 1. If {v}
is a FR-set of G, then for every pair of distinct vertices u and w of G, we have
d (u, v) 6= d (w, v) so that the diameter of G is n−1 and consequently G is a path.
Also, the set consisting of a single pendant vertex of the path forms a FR-set
and so the value of β∗ for the path is 1.

Now, suppose β∗(G) = n − 1. If G is not complete, then G contains two
vertices u and v with d (u, v) = 2. Consider an u-v path (u, x, v) in G and let
S = V (G)− {x, v}. Since d (u, x) = 1 and d (u, v) = 2, we have S is a FR-set of
G. This gives β∗(G) ≤ n− 2, a contradiction. Hence G ∼= Kn. Converse follows
from Proposition 2.4. �

Theorem 3.3. Given positive integers a and n with 1 ≤ a ≤ n − 1, there exists a
graph G of order n such that β∗(G) = a.

Proof. Suppose a and n are two integers with 1 ≤ a ≤ n − 1. We construct a
graph G of order n such that β∗(G) = a as follows. Let G = Pn when a = 1 ; let
G = Cn when a = 2 ; let G = Kn when a = n− 1 and let G = Kr,s with r+ s = n

when a = n− 2. Assume that 3 ≤ a ≤ n− 3.
Case 1. n− a is odd

t
v4

tv3tv5

tv6 tv2
tv1 tx5

tx1 tx2 tx3 tx4

FIGURE 3. A graph G of order 11 with β∗(G) = 5.
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In this case, let G be the graph obtained from the cycle Cn−a+1 = (v1, v2,
..., vn−a+1,v1) by attaching a − 1 pendant edges at exactly one of the vertices
of the cycle, say v1. Let us first verify that β∗(G) = a. If X = {x1, x2, ...,
xa−1} is the set of all pendant vertices of G, then it can be easily verified that
S = {x1, x2, ...., xa−2, v2, vn−a+1} is a FR-set of G and so β∗(G) ≤ a. For the other
inequality, consider FR-set S of G. Then S contains at least one vertex of the
cycle Cn−a+1 as d(v2, xi) = d(vn−a+1, xi), for all i ∈ {1, 2, .., a − 1}. Further, if
there exist two vertices xi and xj that are not contained in S, then d(xi, v) =

d(xj, v), for all v ∈ S and so r(xi/S) = r(xj/S), a contradiction to the fact
that S is FR-set of G. Therefore S contains at least a − 2 vertices from the
set X. Now, if S contains exactly a − 1 vertices from X, then β∗(G) ≥ a as
desired. Suppose S contains a− 2 vertices from X. In this case we show that S
contains at least two vertices of the cycle Cn−a+1. If not, then S contains exactly
one vertex of the cycle Cn−a+1. Let the vertex be x. Suppose x is either v1 or
vn−a+1

2
. Then d(vn−a+1, u) = d(v2, u), for every u ∈ S so that r(vn−a+1/S) =

r(v2/S) which implies that S is no longer a FR-set of G, a contradiction. If
x ∈ {v2, v3, ..., vn−a+1

2
−1}, then d(xa−1, w) = d(vn−a+1, w), for all w ∈ S, again a

contradiction. If x ∈ {vn−a+1
2

+1, vn−a+1
2

+2, ..., vn−a+1}, then d(xa−1, y) = d(v2, y),
for every y ∈ S, a contradiction. Therefore S contains at least two vertices lying
on the cycle Cn−a+1 and so β∗(G) ≥ a.

Case 2. n− a is even

Here, let G be the graph obtained from the cycle Cn−a = (v1, v2, ..., vn−a, v1)
by attaching a − 1 pendant edges at any one of the vertices of the cycle, say v1
and attach one pendant edge at any one of the remaining vertices of the cycle
say v2. Let x1, x2,..., xa−1, xa be the pendant vertices of G, where xa is incident
with the pendant edge which is attached at v2. For n = 11 and a = 5, the graph
G is given in Figure 3. Here, β∗(G) = a. Clearly S = {x1, x2, ..., xa−2, xa, vn−a}
is a FR-set of G and so β∗(G) ≤ |S| = a. In a similar argument, the other
inequality that β∗(G) ≥ a can also be proved and thus β∗(G) = a. �

It follows immediately from the definition that β(G) ≤ β∗(G) for any graph
G. Further, if β(G) = 1, then it has been proved in [2] that G must be a path.
However, as in Theorem 3.2, the value of β∗ for a path is also 1. But when
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β(G) > 1, then β∗(G) can assume any arbitrarily value as shown in the following
theorem.

Theorem 3.4. Given positive integers a and b with 2 ≤ a ≤ b, there exists a graph
G for which β(G) = a and β∗(G) = b.

Proof. If a = b, let G = Ka+1. Assume that a < b. The required graph G is
constructed as follows. Consider a path P = (v0, v1, ..., v2b−2a+2) on 2b − 2a + 3
vertices. Attach a complete graphKa+1 with the vertex set {a1, a2, ..., aa+1} at the
vertex v0 so that aa+1 = v0. Introduce b−a + 1 new vertices, say u1, u2, ..., ub−a+1

and for each i = 1, 2, ..., b − a + 1, join the vertex ui to both v2i−1 and v2i. Let
G be the resultant graph. For a = 4 and b = 7, the graph G is given in Figure 4.
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FIGURE 4. A graph G with β(G) = 4 and β∗(G) = 7

We first claim that β(G) = a. Clearly {a1, a2, ..., aa−1, ub−a+1} is a resolving set
of G and so β(G) ≤ a. For the other inequality, consider a resolving set S of G.
Then S contains at least a − 1 vertices from the set V (Ka+1) − {a1} as for any
two vertices ai and aj in V (Ka−1) − {a1}, d(ai, x) = d(aj, x), for all x ∈ S. Also
S contains at least one vertex of the vertices v2a−2a+2 and ub−a+1; for otherwise
d(v2a−2a+2, y) = d(ub−a+1, y), for every y ∈ S. Hence β(G) ≥ a. We now prove
that β∗(G) = b. Since {a1, a2, ...., aa−1, u1, u2, ...., ub−a+1} is a FR-set of G, we
have β∗(G) ≤ b. Now, consider a FR-set D of G. Then D contains at least a− 1

vertices from the set V (Ka+1) − {a1} as D is also a resolving set of G. Further,
for each i, i = 1, 2, ..., b − a + 1, D contains at least one of the vertices ui, v2i−1

and v2i; for otherwise 〈V −D〉 contains a triangle. Hence β∗(G) ≥ b. �

Remark 3.1. It follows from the definitions that β(G) ≤ β∗(G) ≤ β+
∗ (G). These

inequalities are strict in the sense that they all may be equal or they all can be
distinct. For example, for the graph G of Figure 1, we have β(G) = 4, β∗(G) = 6

and β+
∗ (G) = 8. On the other hand, for trees all the three parameters are equal.

Further, the parameter β+(G) is always greater than or equal to β(G); whereas
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it has no relation with β∗(G). That is, for any graph G, either β+(G) ≤ β∗(G) or
β∗(G) ≤ β+(G). The graph G of Figure 1 satisfies the first inequality. For a path
Pn of order n, β∗(Pn) = 1 and β+(Pn) = 2. However, it seems that β+(G) is always
less than or equal to β+

∗ (G) and we pose this as a conjecture.

Conjecture 3.1. For any connected graph G, we have β+(G) ≤ β+
∗ (G).

4. CONCLUSION

We conclude this paper by listing some open problems that are encountered
during this course of study.

1. Characterize the graphs G for which
(i) β(G) = β∗(G).

(ii) β∗(G) = β+
∗ (G).

2. Given positive integers a, b and c, does there exist a graphGwith β(G) =
a, β∗(G) = b and β+

∗ (G) = c ?

3. Given positive integers r and s, do there exist graphs G1 and G2 such
that

(i) β∗(G1)− β+(G1) = r.
(ii) β+(G2)− β∗(G2) = s.
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